In questo articolo presenterò dei libri che ho trovato ottimi per iniziare o migliorare nel mondo del machine learning. Come ben si sa non è facile iniziare in questo campo da 0 senza avere una conoscenza della matematica e in parte degli argomenti propri del settore, con questa lista spero di aiutarvi a iniziare in questo mondo. Partiamo con la lista!
Machine Learning for Hackers
★★★★★
Questo libro tratta le tematiche di machine learning con molta semplicità, prima viene esposta la teoria e poi viene corredato l’esempio con Python o R. Gli esempi sono semplici e molto bene commentati, non è difficile seguire l’ordine degli argomenti proposti dal libro. I capitoli che lo compongono si basano su argomenti sia teorici che pratici e si va dai problemi di classificazione a metodi di visualizzazione.
Il libro è molto basilare ed è adatto a un programmatore che inizialmente vuole approcciarsi a questo mondo e avere una infarinatura senza finire in pura teoria. Gli esempi sono corredati da codice su Github e vengono offerti alcuni spunti per sistemi in produzione che utilizzano questi algoritmi.
Hands-On Machine Learning With Scikit-Learn and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
★★★★★
Questo libro è molto più pratico del precedente. Esso illustra gli algoritmi più importanti e copre sia la parte di machine learning classica, che di Deep learning. I modelli di machine learning trattati sono: Classificatori con Stocastic Gradient Descent, Regressione Semplice e regressione Logistica, Support Vector Machine, Decision Tree, Ensamble, Random Forest, Riduzione delle dimensionalità e infine reti neurali feed forward e recurrent utilizzando Tensorflow. Il libro usa Python come linguaggio di riferimento, è molto chiaro e semplice comprendendo tutti i punti che sono richiesti in un progetto vero e proprio come l’ottimizzazione dei modelli e la loro valutazione.
Il libro è più avanzato del precedente, espone gli algoritmi piu’ richiesti in questo campo e la loro applicazione. Lo consiglio per chi vuole avere una panoramica generale.
Pattern Recognition And Machine Learning
★★★★★
Questo libro è un vero classico del Machine Learning, all’interno è contenuta tutta la teoria matematica sottostante a ogni modello ed algoritmo più usato. L’approccio dell’autore è puramente probabilistico basato sulla teoria bayesiana.
Viene trattato il tutto partendo dalle basi: si inizia dalla teoria della probabilità, poi la teoria dell’informazione e la statistica per arrivare ai modelli lineari, alle reti neurali e ai metodi kernel. Purtroppo questo libro manca di applicazioni a livello di codice rimanendo di teoria, tuttavia è una base fondamentale per chiunque voglia approndire queste tematiche.
Il sito web del libro è disponibile a questo link: https://goo.gl/uFpD7i
Machine Learning: An Algorithmic Perspective, Second Edition
★★★★★
In questo volume vengono trattati elementi di machine learning e data mining dal punto di vista algoritmico e pratico. È molto più diretto del libro di Bishop e più complesso dei primi due in quanto tratta sì le formule matematiche nello specifico, ma non va a spiegarne ogni punto ed è secondo me molto utile per completare la conoscenza della teoria con gli algoritmi.
È un libro consigliato, la qualità dell’esposizione del libro rimane alta ed è per questo molto utile per integrare le conoscenze.